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CELESTIAL NAVIGATION SYSTEM FOR AN
AUTONOMOUS VEHICLE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation (and claims the benefit of
priority under 35 USC 120) of U.S. application serial no. U.S.
application Ser. No. 12/611,814 filed Nov. 3, 2009, which is a
continuation-in-part of U.S. application Ser. No. 12/415,554
filed Mar. 31, 2009, and U.S. application Ser. No. 12/415,512
filed Mar. 31, 2009, both of which are continuations of U.S.
application Ser. No. 11/176,048 filed Jul. 7, 2005, which
claims priority of U.S. provisional application Ser. No.
60/586,046 filed Jul. 7, 2004. The disclosures of all prior
applications are considered part of (and are incorporated by
reference in) the disclosure of this application.

The present teachings relate to robotic systems and, more
specifically, to navigation systems for autonomous vehicles.

BACKGROUND

Autonomous vehicles including robotic devices are
becoming more prevalent today and are used to perform tasks
traditionally considered mundane, time-consuming, or dan-
gerous. As programming technology increases, so does the
demand for robotic devices that can navigate around a com-
plex environment or working space with little or no assistance
from a human operator.

Autonomous vehicles and associated controls, navigation
systems, and other related systems are being developed. For
example, U.S. Pat. No. 6,594,844 discloses a Robot Obstacle
Detection System, the disclosure of which is hereby incorpo-
rated by reference in its entirety. Additional robot control and
navigation systems, and other related systems, are disclosed
in PCT Published Patent Application No. WO 2004/025947
and in U.S. Pat. Nos. 6,809,490, 6,690,134, 6,781,338, 7,024,
278, 6,883,201, and 7,332,890, the disclosures of which are
hereby incorporated by reference in their entireties.

Many autonomous vehicles navigate a working space by
moving randomly until an obstacle is encountered. Generally,
these types of vehicles have on-board obstacle detectors, such
as bump sensors or similar devices, which register contact
with an obstacle. Once contact is made, command routines
can direct the autonomous vehicle to move in a direction away
from the obstacle. These types of systems, which are useful
for obstacle avoidance, are limited in their ability to allow an
autonomous vehicle to track its location within a room or
other working environment. Other systems, often used in
conjunction with bump sensors as described above, use an
infrared or other detector to sense the presence of nearby
walls, obstacles, or other objects, and either follow the
obstacle or direct the vehicle away from it. These systems,
however, are also limited in their ability to allow an autono-
mous vehicle to navigate effectively in a complex environ-
ment, as they only allow the vehicle to recognize when
objects are in its immediate vicinity.

In more advanced navigation systems, an autonomous
vehicle comprises an infrared or other type of transmitter,
which directs a series of infrared patterns in horizontal direc-
tions around the autonomous vehicle. These patterns can be
detected by a stationary receiver placed at or near a boundary
of the working space, for example on a wall. A microproces-
sor can use the information from signals generated by the
receiver to calculate where in the working space the autono-
mous vehicle is located at all times. Using such systems, the
vehicle can navigate around an entire area. These systems,
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2

however, are best employed in working spaces where few
objects are present that may interfere with the dispersed pat-
terns of infrared signals.

Limitations of the above types of navigation systems are, at
present, a hurdle to creating a highly independent autono-
mous vehicle that can navigate in a complex environment.

SUMMARY

The present teachings provide a navigation control system
for an autonomous vehicle. The system comprises a transmit-
ter and an autonomous vehicle. The transmitter comprises an
emitter for emitting at least one signal, a power source for
powering the emitter, a device for capturing wireless energy
to charge the power source, and a printed circuit board for
converting the captured wireless energy to a form for charg-
ing the power source. The autonomous vehicle operates
within a working area and comprises a receiver for detecting
the at least one signal emitted by the emitter, and a processor
for determining a relative location of the autonomous vehicle
within the working area based on the signal emitted by the
emitter.

The present teachings also provide a transmitter for use in
a navigation control system for an autonomous vehicle. The
transmitter comprises an emitter for emitting at least one
signal, a power source for powering the emitter, a device for
capturing wireless energy to charge the power source and a
printed circuit board for converting the captured wireless
energy to a form for charging the power source.

The present teachings further provide a method for con-
trolling navigation of an autonomous vehicle within one or
more work areas. The method comprises emitting one or
more signals from a transmitter, receiving the one or more
signals on the autonomous vehicle, powering the transmitter
with a power source, charging the power source wirelessly,
localizing the autonomous vehicle with respect to the trans-
mitter, and navigating the autonomous vehicle within the one
or more work areas.

Additional objects and advantages of the present teachings
will be set forth in part in the description which follows, and
in part will be obvious from the description, or may be learned
by practice of the teachings. The objects and advantages of
the present teachings will be realized and attained by means
of the elements and combinations particularly pointed out in
the appended claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the
present teachings, as claimed.

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate several
embodiments of the present teachings and together with the
description, serve to explain the principles of the present
teachings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view of a navigation system for an
autonomous vehicle in accordance with an exemplary
embodiment of the present teachings.

FIG. 2 is a schematic view of a navigation system for an
autonomous vehicle in accordance with another exemplary
embodiment of the present teachings.

FIG. 3A is a side view of a stationary emitter in accordance
with an exemplary embodiment of the present teachings.

FIG. 3B is a side view of a stationary emitter in accordance
with another exemplary embodiment of the present teachings.
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FIG. 4A is a side view of an infrared receiver for an autono-
mous vehicle in accordance with an exemplary embodiment
of the present teachings.

FIG. 4B is a top view of the infrared receiver of FIG. 4A.

FIG. 4C is a side view of an infrared receiver for an autono-
mous vehicle in accordance with another exemplary embodi-
ment of the present teachings.

FIG. 5A illustrates a control system for an infrared receiver
for an autonomous vehicle in accordance with an exemplary
embodiment of the present teachings.

FIG. 5B is a flowchart of a signal detection and localization
program in accordance with an exemplary embodiment of the
present teachings.

FIG. 6 is a top view of a navigation system for an autono-
mous vehicle in accordance with another exemplary embodi-
ment of the present teachings.

FIGS. 7-14 are schematic circuit diagrams of infrared
receivers and transmitters for a navigation system in accor-
dance with an exemplary embodiment of the present teach-
ings.

FIGS. 15A-15C illustrate side, bottom, and end views,
respectively, of an exemplary embodiment of a transmitter in
accordance with the present teachings.

FIGS. 16A-16C illustrate side, bottom, and end views,
respectively, of another exemplary embodiment of a transmit-
ter in accordance with the present teachings.

FIG. 17 illustrates the transmitter of FIGS. 15A-15C used
in a doorway.

FIG. 18 also illustrates the transmitter of FIGS. 15A-15C
used in a doorway.

FIGS. 19A-19C illustrate exemplary embodiments of
setup screens on an exemplary remote control in accordance
with the present teachings.

FIGS. 20A-20C illustrate exemplary embodiments of
schedule screens on an exemplary remote control in accor-
dance with the present teachings.

FIGS. 21A-21C illustrate exemplary embodiments of
mode screen on an exemplary remote control in accordance
with the present teachings.

FIG. 22 illustrates exemplary embodiments of a status
screen on an exemplary remote control in accordance with the
present teachings.

FIG. 23 schematically illustrates an embodiment of a sys-
tem in accordance with the present teachings.

DESCRIPTION OF THE PRESENT TEACHINGS

Reference will now be made in detail to embodiments of
the present teachings, examples of which are illustrated in the
accompanying drawings. Wherever possible, the same refer-
ence numbers will be used throughout the drawings to refer to
the same or like parts.

In accordance with an exemplary implementation of the
present teachings, FIG. 1 is a schematic view of a navigation
system 10 for an autonomous vehicle such as a robotic clean-
ing device 12. The components of the system 10 include, in
this embodiment, a transmitter 20, a charging or base station
22, and an autonomous vehicle 12 that operates in a room or
other similar working area 14. The working arca 14 can be a
floor of a room, bounded at least in part by walls 16. Borders
of a ceiling 18 intersect the walls 16 and are remote from the
working area 14. The depicted transmitter 20 includes two
emitters 24A, 24B. In this exemplary embodiment, the base
station 22 includes an emitter 26 as well. In various embodi-
ments, any combination or quantity of emitters may be used
on the base station 22, or transmitter 20, or both. The autono-
mous vehicle 12 can include an on-board microprocessor,
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power and drive components, task-specific components (dirt
sensors, vacuums, brushes, etc.), and at least one receiver,
such as an infrared receiver 28. The vehicle 12 may also
include certain buttons, switches, etc. for programming the
robot, or such instructions may be directed by a remote con-
trol (see FIG. 18) or a personal computer (not shown).
Depending on the application, certain components may be
removed from the disclosed system 10, or other components
may be added.

For simplicity, this disclosure will describe vacuuming as a
demonstrative task of the depicted robotic cleaning device 12.
It will be apparent, though, that the navigation system dis-
closed herein has wide applications across a variety of
autonomous systems. For example, an autonomous vehicle
may be used for floor waxing and polishing, floor scrubbing,
ice resurfacing, sweeping and vacuuming, unfinished floor
sanding, stain/paint application, ice melting and snow
removal, grass cutting, etc. Any number of task-specific com-
ponents may be required for such duties, and may each be
incorporated into the autonomous vehicle, as necessary.

The transmitter 20 directs at least two infrared signals 22a,
244 from emitters 24 A and 24B to a surface remote from the
working area 14 upon which the autonomous vehicle 12
operates. The depicted embodiment directs the infrared sig-
nals 22a, 24a to the ceiling 18, but it may also direct the
signals 22a, 24a to a portion of a wall 16 or to both the walls
16 and ceiling 18. The signals 22a, 24a can be directed to a
variety of points on the remote surface, but directing the
signals as high as possible above the working area 14 can
allow the signals 22a, 24a to be more easily detected by the
autonomous vehicle 12, because the field of view of the
autonomous vehicle’s receiver 28 is less likely to be blocked
by an obstacle (such as, for example, a high-backed chair or
tall plant). In this disclosure, the regions of contact 225, 245
of'the signals 224, 244 on the remote surface will be referred
to as “points,” regardless of the size of the intersection. For
example, by using a collimator in conjunction with the emit-
ters (described below), the points of intersection 225, 24b of
the signals 22a, 24a can be a finite area with the signal
strongest at approximately central points.

In certain embodiments of the transmitter 20, the signals
22a, 24a are directed toward a ceiling 18, at two points 22¢,
24c, forming a line proximate and parallel to the wall 16 upon
which the transmitter 20 is located. Alternatively, and as
depicted in FIG. 1, the signals 22a, 24a can be directed away
from the wall 16, at an angle of approximately 5° or more, to
avoid interference with objects such as pictures secured to or
hung from the wall 16. The signals 22a, 244 can be transmit-
ted at a known angle 0 therebetween. In an exemplary
embodiment, angle 6 can equal approximately 30°, but other
angles are contemplated by the present teachings. In accor-
dance with certain embodiments, angle 6 can be set at the time
of manufacture or user-defined based on particular applica-
tions or other requirements. By setting the angle 6 to aknown
value, the distance S between the signals 224, 244 at the point
of contact 22¢, 24¢ with ceiling 18 may be determined, pro-
vided the heights of the ceiling h, h, at the points of contact
22¢, 24¢ are known. When used on a flat ceiling 18, as
depicted, h, equals h,. In the embodiment depicted in FIG. 1,
base station 22 emits a signal 26a that can serve as an addi-
tional or optional signal for utilization by the autonomous
vehicle 12. Signal 264 is directed toward a wall 16, so that the
point of contact 265 is high enough to avoid objects that may
obstruct the autonomous vehicle’s field of view. A central
point 26¢ (or laser point) of the point of contact 265 contacts
the wall 16 at height h3.
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As the autonomous vehicle 12 moves within a working
area 14, it detects the signals 22a, 24a emitted by the trans-
mitter 20 as energy bouncing or reflecting off of the diffuse
ceiling surface 18. In an alternative embodiment, visible
points can be used in place of infrared points. A camera
onboard the autonomous vehicle can replace the infrared
receiver in detecting either infrared or visible points. The
autonomous vehicle’s microprocessor can convert the signals
22a, 24a sensed by the receiver 28 into bearings from the
robot 12 to the signals 22a, 24a. The microprocessor can then
calculate representative elevation angles €,, €, and azimuths
a,, o, of the signals to determine the location of the autono-
mous vehicle 12 within the working area 14. In this embodi-
ment, the azimuths a,, o, are measured using a “forward”
direction of movement M of the autonomous vehicle 12 as a
datum, but any suitable datum can be used. By calculating the
elevation angle and azimuth from the autonomous vehicle 12
to the two signals 224, 24a, the autonomous vehicle 12 can
locate itself within a working area with improved accuracy.

FIG. 2 depicts another exemplary embodiment of a navi-
gation system 110 for an autonomous vehicle 112. In the
illustrated exemplary embodiment, an autonomous vehicle
112 moves in a working area having a floor 114. A transmitter
120 can be mounted at a top frame of a doorway 132 between
two rooms 136, 138. Similar to the embodiment depicted in
FIG. 1, the transmitter 120 is installed at a known distance h,
above the floor 114. In alternative embodiments, the trans-
mitter 120 can be installed at the height of the ceiling 118. The
transmitter 120 can be recessed within the door frame 130 or
ceiling 118 to reduce its profile and limit its impact on archi-
tectural aesthetics of a room. Additionally, the transmitter 120
can be disguised to resemble a cover plate for a sprinkler
head, speaker, or other device.

The transmitter 120 emits two signals 122a, 1244 (depicted
graphically by a plurality of arrows) into the two rooms 136,
138, respectively. The signals 1224, 1244 can be configured
to not overlap each other, thus providing a distinct signal on
each side ofthe door centerline 130. In other embodiments, an
overlap of the signals 122a, 124a can be desirable. The
autonomous vehicle 112 includes areceiver 128 having a field
of'vision 134. The emitted signals 1224, 1244 can be detected
by the receiver 128 when the autonomous vehicle’s field of
vision 134 intersects the signals 1224, 1244. Similar to the
embodiment of FIG. 1, the autonomous vehicle can calculate
the azimuth and elevation to the transmitter 120 to determine
its relative location. Similar to the embodiment described
above, by detecting only one signal, the autonomous vehicle
112 can calculate a bearing to the transmitter 120. Accord-
ingly, the transmitter 120 functions as a beacon for the
autonomous vehicle 112 to follow and, if the signal is coded,
the autonomous vehicle 112 can determine which room of a
number of rooms it is located in, based on the coded signal.
The autonomous vehicle 112 is thus able to determine its
relative location on a room-by-room basis, as opposed to
determining its location within a room. Exemplary embodi-
ments of a doorway-based transmitter are described in more
detail with reference to FIGS. 15-18.

FIG. 3A shows a transmitter 20 in accordance with certain
embodiments of the present teachings. The depicted transmit-
ter 20 receives power from a wall outlet 40 for convenience
and unobtrusiveness, but one skilled in the art will appreciate
that transmitters can be powered by means other than a wall
outlet. For example, the transmitter can be placed anywhere
in a room, provided it has an available power source. For
example, battery-powered transmitters are particularly versa-
tile, because they can be located remote from a wall outlet.
Such battery-operated transmitters can be unobtrusively
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6

located above window or door frames, or on top of tall furni-
ture such as dressers or bookshelves.

In accordance with various embodiments of the present
teachings, the transmitter can include a visible signal option
(not shown), aligned with the emitted signals, allowing a user
to direct the signals to particular locations. In accordance with
the present teachings, more than one transmitter maybe used.
Such a system could include communication capability
between the various transmitters, for example to ensure that
only one signal or a subset of signals is emitted at any given
time.

A battery-powered transmitter located above a window or
door frame can not only permit the autonomous vehicle to
localize within a map, coordinate system, or cell grid relative
to the transmitter, but can also localize the transmitter within
the same map, coordinate system, or cell grid, thereby local-
izing the window or door frame. Localization of an autono-
mous vehicle within a working environment is described in
detail in U.S. Patent Publication No. 2008/0294288, filed
Nov. 27, 2008, the entire disclosure of which is incorporated
herein by reference. In the case of a door frame, the door is
ordinarily the passage by which the autonomous vehicle navi-
gates from room to room. The transmitter illustrated in FIG.
3 A, which can project points upward onto a wall or ceiling,
can be battery operated. A transmitter as illustrated in FIGS.
3B-3D can be placed above or at the top of a door (e.g., more
than six feet high, where household power may be unavail-
able) and can also benefit from battery operation (see below).

The exemplary embodiment of a transmitter 20 illustrated
in FIG. 3A includes a housing 42 constructed of, for example,
a plastic or like material. In this figure, the transmitter 20 is
shown cut-away above the line L so that the emitters can be
seen. The transmitter 20 can include a power receptacle 44,
allowing the outlet used by the transmitter 20 to remain avail-
able for other uses. The transmitter 20 includes two emitters
24A, 24B, set within the housing 42. Alternatively, the emit-
ters 24A, 24B can be flush with or extend beyond the housing
42. Setting the emitters 24A, 24B within the housing 42
allows the signals 22a, 24a to be directed by utilizing colli-
mators 22e, 24e. The collimators 22e, 24e can be formed
within the housing 42 or can be discreet components within
the housing 42. Alternatively, the collimators 22e, 24e can be
secured to the outside of the housing 42. In alternative
embodiments, lenses 22d, 24d can be included, with or with-
out collimators 22e, 24e, to focus and direct the signals 22a,
24a. These basic manufacturing considerations can also be
adapted for emitters located on charging or base stations. One
or more emitters on a base station can serve as an additional
point of navigation for the autonomous vehicle within the
room, or may simply aid the autonomous vehicle in locating
the base station.

FIG. 3B depicts an embodiment of a transmitter 120 for
use, for example, with the navigation system 110 depicted in
FIG. 2. The transmitter 120 is secured to the underside of an
upper cross member of the door frame 132, but can also be
recessed therein or secured to or recessed in a ceiling 118. The
transmitter 120 includes two emitters 122, 124. Other
embodiments of the transmitter 120 can include more than
two emitters or a single emitter. By utilizing two emitters, the
transmitter 120 can direct signals into two different rooms, on
either side of the centerline 130 of the door frame 132. This
can allow an autonomous vehicle to distinguish which room
it is located in.

In accordance with various embodiments of the present
teachings, more than two emitters can be utilized with colli-
mators 22e, 24e, 122e, 124e, to distinguish different areas
within a room. Such a configuration allows the autonomous
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vehicle to sense its relative location within a room and adjust
its cleaning behavior accordingly. For example, a signal could
mark an area of the room that an autonomous vehicle would
likely get stuck in. The signal could allow an autonomous
vehicle to recognize the area and accordingly not enter it,
even though it might otherwise be able to do so unimpeded.
Alternatively, or in addition, different signals could mark
areas that require different cleaning behaviors (e.g., due to
carpeting or wood floors, high traffic areas, etc.).

Turning back to FIG. 3B the emitters 122, 124 can be
installed flush with or extend beyond the housing 142. Setting
the emitters 122, 124 within the housing 142 allows the sig-
nals 1224, 124a to be directed by utilizing collimators 122e,
124¢. The collimators 122e¢, 124e allow the signals 122a,
1244 to be directed to two sides of a centerline 130 of a
doorframe 132, without any signal overlap, if so desired. The
collimators 122e, 124¢ can be formed within the housing 142
or can be discreet components within the housing 142. Alter-
natively, the collimators 122e, 124e can be secured to the
outside of the housing 142. In alternative embodiments,
lenses 122d, 1244 may be included, with or without collima-
tors 122e, 124e, to focus and direct the signals 122a, 124a.

In various embodiments of the present teachings, each
signal (regardless of the emitter’s location or the number of
signals) can be modulated at 10 kHz and coded with an 8-bit
code serving as a unique signal identifier, preventing the
autonomous vehicle from confusing one signal or point with
another. Accordingly, more than two uniquely encoded sig-
nals can be employed to increase the accuracy of the autono-
mous vehicle’s calculations regarding its location within a
working area. As noted above, using only one emitter allows
an autonomous vehicle to take a heading based on that signal.
Using two or more signals can allow the autonomous vehicle
to continue navigating if fewer than all of the signals are
detected (either due to a failure of a signal transmission or the
autonomous vehicle moving to a location were fewer than all
of the signals are visible).

In certain embodiments, the transmitter can pulse the
coded signals as follows. After an initial synchronization
pulse, a first signal at 10 kHz is emitted for 100 ms. This can
provide a sufficient time for the autonomous vehicle’s
receiver and processor to calculate azimuth and elevation
angles, as discussed in detail below. So that the autonomous
vehicle can determine which signal is being received, the
transmitter can pulse a series of five bits, each for 10 ms. The
five bits include two start bits, for example a zero and a one,
followed by a unique three bit identifier to identify that par-
ticular signal or point. After a 100 ms delay, the transmitter
repeats the sequence for the second signal or point. By chang-
ing the modulation frequency and/or the identifier, the second
signal or point can be uniquely distinguished from the first.
Any number of unique signals can be transmitted and identi-
fied in this manner. After the series of signals are transmitted,
the transmitter can wait a substantially longer period of time,
for example on the order of one to two seconds, before repeat-
ing the transmitting sequence, starting again with the first
signal. The length of time for each transmission is merely
exemplary, and may be varied based on a particular applica-
tion, device, etc. As stated above, the signals can be modu-
lated at the same or different frequencies.

FIG. 4A depicts a side view of an exemplary receiver 228
that is surface mounted on a housing 212 of an autonomous
vehicle. FIG. 4B is a top view of the same receiver 228. The
receiver 228 can include an outer shell or housing 244 com-
prising a generally translucent or transparent, high-impact
plastic or like material. Four photodiodes 246a, 2465, 246¢,
and 2464 can be installed in an orientation in the housing 244
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generally corresponding to four adjacent sides of a cube.
Accordingly, each photodiode can be generally perpendicular
to the photodiodes on either side of it and parallel to the
photodiode opposite it. In certain embodiments, a fifth pho-
todiode 246¢ can be located generally above the plane of
orientation of photodiodes 246a-246d. At least one photo-
diode, in this case photodiode 246a, is oriented toward a
direction of forward movement M of the robot. The photo-
diodes can be connected via control wiring and other compo-
nents to the autonomous vehicle’s microprocessor and related
systems. Installing a receiver 228 on top of the housing 212
can provide the autonomous vehicle with a wide field of view.
As depicted, the field of view 01 for a horizontally-oriented
photodiode 246¢ is extremely wide. Depending on the sensi-
tivity of the photodiode 246¢, the thickness or translucence of
the plastic, and other factors, the field of view 81 may
approach or exceed 180°. Similarly, due to the orientation of
photodiodes 246a-2464d, their field of view 02 approaches
near vertical in an upward direction from the autonomous
vehicle’s housing 212 and is limited below only by the
autonomous vehicle’s housing 212. There can be an overlap
between the fields of view 81 and 82 in the longitudinal plane,
as depicted in FIG. 4B.

As illustrated in FIG. 4 A, there can be overlap between the
fields of view 81 and 82, allowing the autonomous vehicle to
detect signals in its operating area. The overlap creates a total
field of view for the receiver that approaches the entire vol-
ume of the room above the robot housing. Accordingly, this
embodiment of the receiver 212, is well-suited to the exem-
plary embodiment of the navigation system depicted and
described in FIG. 2, wherein a signal is projected into an
entire room. Of course, this receiver 228 could also be used
with the system depicted in FIG. 1. Although installing the
receiver closer to or above a top surface of the autonomous
vehicle can provide for a wider range of view, this configu-
ration increases a height of the autonomous vehicle slightly
and can limit autonomous vehicle travel beneath certain
obstacles such as couches, low tables, or the like.

FIG. 4C depicts an exemplary embodiment of the receiver
328 installed below a surface of the autonomous vehicle
housing 312. The photodiodes 346a-346¢ (as a group referred
to as 346) can be installed in a void 350 or other cavity below
the surface of the autonomous vehicle housing 312. A trans-
lucent or transparent plastic cover 3124 can be fitted over the
photodiodes 346. The cover 312a can be secured to the hous-
ing 312, for example, with screws, press-fit connections, or
other connectors. Alternatively, the cover 312a can be set in
place without connectors, allowing easier access to the pho-
todiodes 346 for service or replacement. This lower profile
version reduces or eliminates the risk associated with a sur-
face mounted receiver getting stuck below obstacles (as
described above).

The construction of the receiver 328 can be similar to that
of FIG. 4A. Four of the photodiodes 346a-346d can be
installed orthogonal to each other, facing a predefined direc-
tion on the autonomous vehicle (e.g., front, back, right, and
left). The fifth photodiode 346¢ can be installed orthogonal to
the other four photodiodes, facing directly up from a top of the
autonomous vehicle. Because the photodiodes 346 are set
within the housing 312, the receiver’s overall field of view 83
can be limited to a certain degree. In this embodiment, 33
equals approximately 120°. The field of view 83 can be wider
or narrower depending on the depth of installation below the
surface of the autonomous vehicle housing 312. Alterna-
tively, the field of view 83 can be modified by utilizing a cover
312a having particular effects on signal transmission, such as
a fish-eye lens or the like.
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FIG. 5A illustrates an exemplary embodiment of a control
schematic 560 for a receiver 528. The receiver 528 can
include a number of independent photodiodes 546a-546¢ (as
a group referred to as 546), pre-amplified and multiplexed
into a single microprocessor 562. As described above, four of
the photodiodes 546a-5464 can be installed orthogonal to
each other, facing a predefined direction on the autonomous
vehicle (e.g., front, back, right, and left). A fifth photodiode
546¢ can be installed orthogonal to the other four, facing
directly up from the top of the robot. Once a reflected signal
is received by a photodiode 546, the receiver 528 determines
the frequency of modulation of the signal, the identity
sequence, if any, and the envelope of received energy (i.e., the
demodulation of energy). These values can be sent to the
microprocessor 562, which can calculate the location of the
autonomous vehicle relative to the signals and the identities
of the signals. Additionally, if only a single point is detected
by the receiver 528 (if for example, the robot’s view of the
second signal is obstructed), the autonomous vehicle can use
this point as aheading. By following this heading, the autono-
mous vehicle can move within the work area until a second
point is detected.

In operation, a receiver (e.g., an infrared receiver) can first
measure the “noise floor” of the autonomous vehicle’s envi-
ronment, comprising the amount of energy (e.g. infrared
energy) present in the autonomous vehicle’s environment,
which it sets as the threshold value. This value can represent
an average of the values for each photodiode. Any subsequent
measurement above this threshold value can trigger an event
(e.g., a calculation of point azimuth and elevation). The
receiver can then measure the modulation frequency again,
searching for an expected increase at 10 kHz (i.e., the fre-
quency of the initial synchronization signal transmitted by the
transmitter). If a 10 kHz frequency increase is detected, the
autonomous vehicle recognizes the increase as an emitted
navigation signal. The autonomous vehicle can then measure
the amplitude of the reflected point on all five photodiodes to
determine an average value. This value can then be compared
to alist of signal frequencies to determine which of the signals
has been detected. Alternatively, any detected identity
sequence associated with the signal can be compared to a list
of transmitter codes or signal IDs stored in a lookup table in
the autonomous vehicle’s processor memory.

The on-board microprocessor can use the amplitude value
to determine the azimuth and elevation of the received sig-
nals, which it can then use to determine its location within a
working area. To determine the azimuth, the microprocessor
enters the values of the two strongest readings from the tour
side photodiodes into an algorithm. The algorithm takes the
ratio of these two readings to determine the azimuth angle.
For example, if the two strongest readings from two photo-
diodes are equal, the algorithm recognizes that the point is
located at an azimuth angle that is directly between the two
photodiodes (i.e., at 45°). In a similar algorithm, the ampli-
tude value measured from the strongest side photodiode and
the amplitude value measured from the top-facing photo-
diode value are used to determine the elevation of the signal.
These values can be stored in the autonomous vehicle’s
memory for future reference.

After the receiver has detected at least two points, and
determines the azimuth and elevation of each point, it deter-
mines its location within the working space. A triangulation
algorithm based on the known ceiling height and the azimuth
and elevation of the two detected points allows the processor
to determine where in the working space the autonomous
vehicle is located. Over time, the values of elevation and
azimuth between each coded point and specific locations of
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the autonomous vehicle within the workspace can be stored in
the autonomous vehicle’s memory, creating a map of the
environment in which the autonomous vehicle operates.

In various embodiments, a navigation system 200 as
depicted in FIG. 5B uses an angle-based localization system.
Values corresponding to elevation and azimuth are deter-
mined by synchronously comparing average amplitudes from
the number of detectors arranged on the robot. Of the five
detectors, four are arranged in a plane and are angularly
spaced by 90° increments. The fifth detector is in the center of
the aforementioned four-detector array and aimed so that it is
orthogonal to the plane in which the other detectors lie,
directed vertically from the autonomous vehicle. Together,
this five-element array can have a full or near-full hemispheri-
cal field of view.

In the embodiment depicted in FIG. 5B, all five detectors
monitor for amplitude (Step 705) until an amplitude that
crosses a preset threshold is detected (Step 710). After the
amplitude on any detector crosses the preset detection thresh-
old, the frequency of the signal on the strongest detector is
measured and compared against known transmit frequencies
(Step 715). If the measured frequency is one of the known
transmit frequencies (Step 720), the next step in the detection
process can be executed. If the signal is not a known transmit
frequency, the detection process can be aborted (Step 725)
and the signal detected can be declared to be “out of band.”
Once an “in band” frequency is detected, a time-averaged
amplitude for each photo detector can be measured, converted
to a binary number, and stored for later processing in a micro-
processor memory (Step 730). Upon storing the five numeri-
calvalues (one for each photodiode), the azimuth angle can be
determined.

Of the four detectors that reside in a single plane, the values
of the two strongest signals detected are used to form a ratio
to determine the azimuth angle (Step 735). The ratio of sec-
ond-strongest signal over the strongest signal is either com-
pared to a look-up table or inserted into a mathematical equa-
tion to determine an azimuth angle output. Both the look-up
table and the equation represent the overlap of the received
sensitivity patterns of two orthogonal detectors with known
sensor responses. In this embodiment, the photo detector
output is modeled as a fourth-order Gaussian response to
angle off of “boresight,” a term that generally refers to a
vector that is orthogonal to the semiconductor die in the
detector package.

To calculate elevation, the strongest signal from azimuth
calculation (i.e., the denominator of the ratio) must first be
normalized, as if it were on boresight of the respective detec-
tor (Step 740). For example, if the azimuth has been deter-
mined to be 10° off of boresight from a given detector, that
10° angle is entered into a look-up table or equation that
describes the sensor response of any single photo detector. At
zero degrees, the output of this look-up table/equation would
be 1.00000. As the angle deviates from zero degrees, the
output drops to some fraction of 1.00000 (the normalized
value at boresight). For example, if a value of 10° is entered
into the equation, the output of this operation can be, for
example, 0.99000. The denominator of the azimuth ratio can
then be divided by this fractional value in order to scale up, or
“normalize” that value to what it would be if the azimuth were
actually zero degrees. This normalized value can then be
stored in memory and elevation can be determined therefrom.

To calculate elevation, the normalized output from the
previous step is used to produce a new ratio with the output
from the upward-looking (fifth) detector, so that the numera-
tor is the second-strongest of the two values and the denomi-
nator is the strongest of the two values (Step 745). This ratio
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is then entered into the same look-up table or equation from
the step above (used to calculate azimuth), thus outputting an
elevation angle.

The benefits of this type of navigation system can be
numerous. As the autonomous vehicle moves about a working
area, measuring the azimuth and elevation of the various
points detected, it can create a map of the area, thus deter-
mining its location within a given space. With this informa-
tion, it can fuse data from all of its on-board sensors and
improve cleaning or other task efficiency. One way it can do
this is to create a map where the high-traffic areas in a house
or other building are located (as indicated by readings from
the dirt sensor, for example). The autonomous vehicle would
then clean the areas it identified as high traffic (and therefore,
often dirty) each time it passes over that areca, whether
directed to or not. The autonomous vehicle may also improve
its cleaning function by merging the output from the wheel
drop, stasis, bumper, and wall-following sensors to roughly
mark areas of entrapment, or where large obstacles exist, so
that those areas can potentially be avoided in future runs.

In accordance with various embodiments of the present
teachings, another method of improving cleaning efficiency
involves selectively programming the autonomous vehicle to
clean particular areas, as detailed below. For example, a per-
sonal computer or remote control may be used to control the
autonomous vehicle. Although the autonomous vehicle can
operate without operator intervention, an operator can ini-
tially set up the autonomous vehicle, or can direct the autono-
mous vehicle to operate in particular areas or at particular
times. For example, by using more than one transmitter in
various rooms on one floor of a house, an operator may be
able to direct the autonomous vehicle to clean specific rooms
in a particular order and/or at a specific time. The operator
could select, in a control program field of a computer program
for example, the living room, family room, bathroom, and
kitchen areas for cleaning. A remote control for use in accor-
dance with the present teachings is described in more detail
with respect to FIGS. 19-22.

Once commanded (either immediately or on a predefined
schedule), the autonomous vehicle can be signaled to begin
its cleaning cycle. The autonomous vehicle undocks from its
base/charging station and begins cleaning the closest or first
room on the programmed list. It can recognize this room and
can differentiate it by the coded group of infrared points (e.g.,
on a ceiling of the room) or the coded signal emitted in the
room. After the first room is cleaned, the autonomous vehicle
can, for example, check its level of power and return to its
charger for additional charging if needed. In accordance with
certain embodiments, in order to return to the charger, the
autonomous vehicle can follow the point or points on the
ceiling back to the base station. Alternatively, the autonomous
vehicle can use a known docking behavior. After charging is
complete, the autonomous vehicle can traverse roughly back
to the place it left off and resume cleaning. This sequence of
events continues until all of the programmed rooms have been
cleaned. Alternatively, the selection of particular areas to
clean could be, for example, made by remote control or by
pressing buttons on a control panel located on the base station.
By using a personal computer, however, multiple transmitters
could communicate with each other and with the base station
via power lines using a known communication technology.

An alternative embodiment of the present teachings is
depicted in FIG. 6, wherein an autonomous vehicle uses a
number of signals for headings to move from room to room.
The autonomous vehicle 612 is moving in a direction M
within room A when its power level drops below a predeter-
mined level, requiring its return to a base charging station
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622. Upon crossing the predetermined power level, the
autonomous vehicle’s receiver 628 searches for a signal from
anearby emitter. As the vehicle is located in room A, it detects
the signal 622a emitted from transmitter 620a and, using the
signal 6224 as a heading, moves directly for that signal 622a.

Alternatively, the autonomous vehicle 612 can emit its own
coded pulse, to determine if any transmitters are in the area.
This coded pulse could “awaken” sleeping or otherwise dor-
mant transmitters, which would then begin their own emis-
sion cycle. Alternatively, the pulse can be an audible or visual
signal such as a distinct beep, buzz, or visual strobe. Some
pulses need not be within the field of view of the transmitter.

The robot 612 will continue to move toward signal 622a
until one of several events happens at or near doorway 632a.
In a first event, the autonomous vehicle may determine, based
on readings from its photodiodes, that it is directly under the
transmitter 620a. In a second event, the autonomous vehicle
612 may sense a second signal 624a, which may overlap the
first detected signal 622a. This could occur if the configura-
tion of the emitters, collimators, etc., as described in more
detail above, provides overlapping signal patterns between
signals 622a and 624aq. In a third event, autonomous vehicle
612 can sense a signal from an entirely different transmitter,
in this case signal 62256 from transmitter 6205. Other events
are also contemplated, as suitable for a particular application.
The occurrence of an event presents the autonomous vehicle
612 with any number of behavioral, functional, or other
options. For example, each coded signal may serve as a
unique marker for a different working space. Upon detecting
the unique marker associated with a particular working space,
the autonomous vehicle may alter its cleaning function. Thus,
if room A is carpeted but room B is uncarpeted, the autono-
mous vehicle can adjust its cleaning as it moves from room A
to room B. Upon detecting a second signal (in this case, signal
6225) the autonomous vehicle can, in certain embodiments,
completely disregard the first signal 6224 received when its
return to the base station 622 began. Using new signal 6225 as
a heading, it begins moving toward that signal 6225. The
autonomous vehicle 612 can, in certain embodiments, check
its battery level at each event, storing that value in its micro-
processor. Over time, the autonomous vehicle can thereby
create a table of battery levels at each event (and battery level
change from event to event), and be able to accurately deter-
mine precise battery power remaining at each transmitter
location.

Once the autonomous vehicle is traversing room B (shown
in phantom as 612'), it will eventually determine, based on
battery level, time, or other factors, to follow the heading
provided by signal 6225, and continue its return to its base
station 622. The autonomous vehicle 612 can follow the
heading until an event occurs at or near doorway 6325. Again,
the event can be detecting a strength of signal 62254, indicating
that the autonomous vehicle is directly below the transmitter,
detecting an overlap signal from 6245, or detecting a new
signal 622¢. The autonomous vehicle 612 can again perform
any of the behaviors described above: check and store its
battery level; change cleaning characteristics; etc.

Once in room C, the autonomous vehicle can begin follow-
ing the heading provided by signal 622c¢. At or near the
doorway 632¢ to room D, an event may direct the autonomous
vehicle to perform any number of behaviors. Alternatively,
the autonomous vehicle can move directly to charging station
622, guided by emitted signal 626 or another signal or pro-
gram.

During its return to the base station, as the autonomous
vehicle 612 moves from room A to room B to room C and so
on, it detects and stores information about each coded signal
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that it detects along its route. By storing this information, the
autonomous vehicle can create a map, using the coded signals
as guideposts, allowing it to return to its starting location in
the future. After charging, the autonomous vehicle can return
to the room it was working in prior to returning to its base by
comparing the detected signals and their strengths to the
stored information.

FIGS. 7-9 depict schematic circuit representations for
exemplary embodiments of various components of an infra-
red signal transmitter, namely an AC-DC converter, a micro-
controller and support circuitry, and LED drivers. More spe-
cifically, FIG. 7 illustrates an electronic circuit that takes 120
VAC 160 Hz line voltage and converts it to a regulated +5
VDC supply. This supply can be used to power the microcon-
troller and associated circuitry of the transmitter depicted in
FIG. 8. In addition to power conversion, this circuit can also
provide an isolated digital logic signal to the microcontroller,
whenever a “zero-crossing” in the AC line input is detected.

FIG. 8 illustrates a transmitter microcontroller and support
circuitry (i.e., a clock oscillator and an in-circuit serial pro-
gramming port). In addition, there is a circuit that allows a
user-initiated button press to project visible light from a pair
of LEDs, co-located with a pair of IR LEDs, onto a remote
surface for the purpose of assisting the user in aiming the
infrared signal points.

FIG. 9 illustrates two channels of an IR LED driver. Each
driver can control a preset constant current into a single IR
LED, which can then emit near-infrared light that can be
collimated by an external lens and projected onto the remote
surface. Each IR LED can be modulated and pulse-coded
independently of the other. This allows the microcontroller in
the autonomous vehicle to discern between the different
transmitter signals, to determine which detected signal is
which.

FIGS. 10-14 depict schematic circuit representations in
accordance with certain embodiments of various components
of'a vehicle-mounted infrared receiver, namely DC-DC linear
power converters, a five channel preamplifier, a multiplexer
and programmable tuned amplifier, detectors, and a micro-
controller and associated peripherals. More specifically, FIG.
10 depicts two independent linear voltage regulators. One of
the regulation circuits can be switched ON-OFF via a micro-
controller to conserve battery power during a sleep mode.

FIG. 11 depicts five independent preamplifiers that can
convert respective photodiode output currents into voltages of
much larger magnitudes. Each preamplifier is built using an
operational amplifier in a transimpedance topology. This
allows the preamplifiers to be configured with low noise.
Also, there is an active feedback circuit that is used to null
large photodiode current offsets caused by exposure of the
circuit to sunlight and other strong low-frequency light
sources.

FIG. 12 illustrates an exemplary multiplexer and program-
mable tuned amplifier for the receiver. This circuitry can be
segregated into three functional blocks. The first block is a
multiplexer that receives signals from the five photodiode
preamplifiers and outputs one of the signals to a program-
mable attenuator, as commanded by the receiver’s microcon-
troller. The second block is a programmable attenuator that
can be used to reduce the overall receiver gain, to deal with the
large dynamic range of received signals. As depicted herein,
there are two digital inputs from the microcontroller, which
permits four discrete gain levels to be selected. The third
block is a tuned, band-pass amplifier that can provide the bulk
of the voltage amplification to signals that fall within the
circuit’s pass band.
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FIG. 13 depicts an exemplary embodiment of two detectors
that can be used in the receiver. The first detector is a rectify-
ing, envelope detector with integral voltage gain, and can be
used to strip modulation frequency and provide a signal enve-
lope to the microcontroller’s analog to-digital converter. The
signal envelope can be used the by microcontroller to deter-
mine the magnitude of the received signal. The second detec-
tor is a voltage comparator, which can be used to “square up”
received pulses and convert them to a CMOS logic level,
thereby allowing the microcontroller to extract digital data
from the received signals.

Lastly, FIG. 14 illustrates the microcontroller and its
peripherals. The peripherals can include a clock oscillator,
ICSP port, voltage supervisor/reset generator, and RS-232
level serial port for interfacing with a host personal computer
or a main robot processor.

Accordingly, the navigation system can be operationally
robust and adapted to compensate for variances in infrared
energy. For example, if the autonomous vehicle is operating
in an environment with high base infrared readings (e.g., a
space with a large number of fluorescent lighting fixtures or
windows that allow entry of sunlight), the autonomous
vehicle can distinguish the infrared signals generated by the
transmitter from the infrared noise present in the space. Simi-
larly, the receiver can distinguish between other off-band
signals, such as infrared remote controls. In such cases, estab-
lishing an initial threshold value of infrared energy and emit-
ting a predefined, known, modulated infrared signal from the
transmitter overcomes these environmental disturbances.
Additionally, the transmitter can be tuned to emit a suffi-
ciently strong infrared signal to accommodate surfaces with
varied reflectivity.

FIGS. 15A-15C illustrate side, bottom, and end views,
respectively, of an exemplary embodiment of a transmitter
200 having a thin rectangular housing and configured for
placement in a variety of locations including a top surface of
a doorway as illustrated in FIGS. 2, 6, 17, and 18. In the
illustrated embodiment, an emitter 222, 224 is located adja-
cent each edge E;, E, of the transmitter 200. In accordance
with certain embodiments of the present teachings, each emit-
ter can comprise a lens 222d, 224d as described above to
focus and direct the emitted signal. The present teachings also
contemplate the transmitter 200 comprising a third emitter
226 with a lens 2264 to focus and direct the emitted signal.
The illustrated transmitter 200 also comprises a battery 230
and a printed circuit board 240. As discussed above, the
battery 230 can provide power to the transmitter 200 while
allowing the transmitter 200 to be located without regard to
proximity of power supplies such as wall outlets. Other por-
table power sources such as capacitors can also be used
instead of, or in addition to, the battery. The printed circuit
board 240 can be employed to modulate and code the emitted
signals, and to provide power conversion for wirelessly
charging the battery 230 or other power source. An antenna
250 can be utilized to intercept fields for conversion to current
for wirelessly charging the battery, as described in more detail
below.

Wireless charging in accordance with the present teachings
can comprise, for example, RF scavenging or magnetoreso-
nance. Wireless charging via RF scavenging can be accom-
plished as disclosed in U.S. Patent Publication No. 2009/
0102296, the entire disclosure of which is incorporated herein
by reference. The antenna 250 (e.g., a RF wireless commu-
nication antenna) can facilitate both energy harvesting and
wireless communication for the transmitter 200 and, to facili-
tate energy harvesting, can harvest RF energy from a variety
of sources including, for instance, medium frequency AM
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radio broadcast, very high frequency (VHF) FM radio broad-
cast, cellular base stations, wireless data access points, etc.
The energy can be harvested from that naturally available in
the environment (work area) or can be broadcast by a source
such as an RF signal emitter on the autonomous vehicle or on
another device such as a base station or a dedicated emitter.
FIG. 23 schematically illustrates an embodiment of the
present teachings wherein an autonomous vehicle 12 includes
a RF signal emitter 360 that directs an RF signal toward the
transmitter 200 for harvesting to ensure adequate RF energy
for recharging the battery 230 or other power source. The
printed circuit board 240 can serve to convert the harvested
RF energy into a usable form, for example AC voltage or DC
voltage. The printed circuit board 240 can also regulate the
converted power.

Certain embodiments of the present teachings contemplate
wireless charging via strongly coupled magnetic resonances,
or magnetoresonance. Such wireless charging is described in
detail in Kurs, et al., Wireless Power Transfer via Strongly
Coupled Magnetic Resonances, Science, Vol. 317, pp. 83-86
(Jul. 6, 2008), the entire disclosure of which is incorporated
herein by reference. For wireless charging via magnetoreso-
nance, the antenna 250 can comprise, for example, a capture
coil that can capture and convert magnetic energy to AC
voltage or DC voltage. The magnetic energy captured by the
capture coil can be supplied by a power source such as a
highly resonant magnetic source. The power source can be
located, for example, on the autonomous vehicle (in a sce-
nario such as that illustrated in FIG. 23), on a dedicated
device, or on a base station for the autonomous vehicle.

One skilled in the art will appreciate that the transmitter
200 can derive its power from a source other than a battery, for
example from a wall plug or by direct connection to a build-
ing’s power supply. Also, the emitters can have differing
locations on the transmitter, and need not be combined with a
lens as illustrated. The size of the transmitter can vary in
accordance with functional considerations (e.g., being large
enough to house its components) as well as aesthetic consid-
erations (e.g., minimizing size to be less obtrusive).

FIGS. 16A-16C illustrate side, bottom, and end views,
respectively, of another exemplary embodiment of a transmit-
ter 300 having a thin rectangular housing and configured for
placement in a variety of locations including a top surface of
a doorway as illustrated in FIGS. 2, 6, 17, and 18. In the
illustrated embodiment, an emitter 322, 324 is located adja-
cent each edge of the transmitter 300. In accordance with
certain embodiments of the present teachings, each emitter
can comprise a collimator 322e, 324e¢ and a lens 324d (see
FIG. 16C) as described above to focus and direct the emitted
signal. Although a third emitter is not illustrated in this
embodiment, the transmitter can comprise at least one addi-
tional emitter and can employ a lens and/or collimator thereon
to focus and direct the emitted signal. The illustrated exem-
plary transmitter 300 also comprises a battery 330 and a
printed circuit board 340. As discussed above, the battery 330
can provide power to the transmitter 300 while allowing the
transmitter 300 to be located without regard to proximity of
power supplies such as wall outlets. The printed circuit board
340 can be employed to modulate and code the emitted sig-
nals, and to provide power conversion for wirelessly charging
the battery 330 or other power source. An antenna 350 can be
utilized to intercept magnetic or RF fields for conversion to
current for wirelessly charging the battery 330, as described
above with respect to FIG. 15.

One skilled in the art will appreciate that the transmitter
300 can derive its power from a source other than a battery, for
example from a wall plug or by direct connection to a build-
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ing’s power supply. Also, the emitters can have differing
locations on the transmitter, and need not be combined with a
collimator and/or a lens as illustrated. The size of the trans-
mitter can vary in accordance with functional considerations
(e.g., being large enough to house its components) as well as
aesthetic considerations (e.g., minimizing size to be less
obtrusive).

FIG. 17 illustrates a transmitter 200 mounted on a top
surface T of a doorway DW or other passage between two
areas. In the illustrated embodiment, because the transmitter
200 is placed at a high position within the room or work area,
the emitted signals should not be directed upward toward the
ceiling and instead should be directed toward the portion of
the room through which the autonomous vehicle 12 travels. In
accordance with various embodiments, the emitted signals
can be coded and modulated as discussed above, so that the
autonomous vehicle 12 can recognize the transmitter for
localization and/or navigation purposes. In addition, in accor-
dance with certain embodiments, the emitted signals can
include information for the autonomous vehicle 12, such as
information instructing the autonomous vehicle to adjust its
cleaning behavior.

In embodiments of the present teachings employing more
than two emitters, the signals can be utilized, e.g., with col-
limators or lenses, to distinguish different areas within a
room. Such a configuration allows the autonomous vehicle 12
to sense its relative location within a room and adjust its
cleaning behavior accordingly. For example, a signal could
mark an area of the room that an autonomous vehicle would
likely get stuck in. The signal could allow an autonomous
vehicle to recognize the area and accordingly not enter it,
even though it might otherwise be able to do so unimpeded.
Alternatively or additionally, different signals could mark
areas that require different cleaning behaviors (e.g., due to
carpeting or wood floors, high traffic areas, etc.).

The transmitters 200, 300 as illustrated in FIGS. 15A-15C
and FIGS. 16 A-16C, respectively, can function in a manner
similar to transmitter 120 in FIG. 2, as described above, with
the additional emitter(s) allowing more functionality, as
described above, such as indicating areas requiring different
cleaning behaviors. The transmitters 200, 300 can also func-
tion in a manner similar to the transmitters illustrated in FIG.
6, and particularly those located within the doorway/room
transitions in FIG. 6.

FIG. 18 illustrates the autonomous vehicle of FIG. 17
passing through a doorway DW, and additionally illustrates
an exemplary embodiment of the present teachings utilizing a
remote control 370 to communicate with the autonomous
vehicle 12 and/or the transmitter 200. An exemplary embodi-
ment of a remote control 370 is disclosed in more detail in
FIGS. 19A-22.

As illustrated in FIGS. 19A-19C, the remote control 370
can include one or more power buttons 340 for powering
ON/OFF the remote control 370 the transmitter 200,300,
and/or the autonomous vehicle 12. In addition, the remote
control 370 can include a display 310 (e.g., a liquid crystal
display) and one or more input devices 320, 330 such as
buttons and/or a toggle pad. FIGS. 19A-19C show the remote
control 370 being used to set up an autonomous vehicle for
cleaning. In FIG. 19A, the display 310 displays a variety of
room types to be cleaned by the autonomous vehicle. In the
illustrated embodiment, the user can locate himself and the
remote control 370 in a work area to be cleaned and select
from a number of room type choices, such as bedroom, office,
kitchen, utility room, living room, dining room, bathroom,
and hallway. The system can identify this room via an
encoded and/or modulated emitted signal from a nearby
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transmitter. The user selects one of the room types by pressing
an adjacent button 320. Thereafter, the display 310 can
acknowledge the user’s selection and automatically connect
to a controller (see FIG. 19B), such as a personal computer, to
allow the user to provide a specific name for the room. In other
embodiments, the remote control can correlate the coded
emitted signal with the chosen/assigned name and allow a
user to choose whether to engage in specific room naming
(e.g., viainput 320) or just assign a predetermined name to the
room such as bedroom 1, office 1, kitchen 1, etc. Once a room
has been assigned an appropriate name, the remote control
can allow the user to enter additional names or continue other
aspects of setup. In FIG. 19C, the remote control 370 displays
the rooms that have been registered and allows the user to
select which rooms are to be cleaned. In the illustrated exem-
plary embodiment, the user can select one or more of the
registered rooms by pressing an adjacent button 320. The
system can then determine the order of the rooms to be
cleaned and the start time (e.g., immediately), or can allow the
user to determine the order of the rooms to be cleaned and/or
the start time. In certain embodiments, the system can allow
the user to select a start time for each selected room.

Another input device 330, shown in the illustrated embodi-
ment as a toggle pad or toggle button, can allow the user to
direct the autonomous vehicle to perform a number of func-
tions. For example, the user can press a center “CLEAN”
portion of the toggle button to direct the autonomous vehicle
to begin cleaning immediately, or can select the right “DOCK
NOW?” button to direct the autonomous vehicle to begin a
homing behavior and dock. A top “SCHEDULE” button can
be pressed to allow the user to select a schedule of rooms
and/or times for cleaning, an exemplary process for which is
illustrated in FIGS. 20A-20C. The user can also select the left
“MODES” button to select among a variety of available
cleaning modes such as spot clean, deep clean, area rug, drive
now, etc. as illustrated in FIG. 21A. The modes displayed in
FIG. 21A can be selected by pressing a button 320 adjacent a
desired mode. In certain embodiments, after a mode has been
selected, the remote control 370 can provide further instruc-
tions to the user. For example, if an “area rug” mode has been
selected, the remote control 370 can display instructions con-
firming that the autonomous vehicle is in “area rug” mode and
instructing the user to place the autonomous vehicle on the
area rug and then press the central “CLEAN” button. In the
illustrated embodiment of FIG. 21B, the remote control 370
confirms that the “ROBOT WILL CLEAN THE RUG
ONLY.” In another example, if a “DRIVE NOW” mode is
selected, the remote control 370 can allow the user to drive the
vehicle. In accordance with FIG. 21C, the remote control 370
can inform the user that the autonomous vehicle is in a
“DRIVE NOW MODE” and instruct the user to press certain
buttons to drive the robot. For example, the top “SCHED-
ULE” button can be pressed to turn the autonomous vehicle
forward, the left “MODES” button can be used to turn the
vehicle to the left, the right “DOCK NOW” button can be used
to move the vehicle to the right, and the bottom “SETUP”
button can be used to move the vehicle backward. One skilled
in the art will appreciate that other buttons can be used to drive
the vehicle, such as a dedicated drive toggle or input buttons
320. In certain embodiments, the remote control 370 can also
inform the user how to exit the “DRIVE NOW” mode, such as
by pressing a portion of the toggle button 330.

FIGS. 20A-20C illustrate an exemplary embodiment of
cleaning schedule displays that can be utilized when the user
has pressed the top “SCHEDULE” portion of toggle button
330. In the illustrated exemplary embodiment, cleaning fre-
quency choices are first displayed for user selection. For
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example, twice daily, daily, three times per week, weekly,
bi-weekly, or monthly can be selected. In certain embodi-
ments, a “CUSTOM?” selection can also be made. Users select
a frequency by pressing a button adjacent their preferred
frequency. In accordance with certain embodiments, once a
frequency has been selected or, if “CUSTOM” is selected, the
remote control can display the days of the week for cleaning
(see FIG. 20B). The user can select an appropriate number of
desired days by pressing the button 320 adjacent those days.
In addition, in accordance with certain embodiments, the user
can select a time for cleaning for all selected days or a time for
cleaning for each selected day. Thereafter, as illustrated in
FIG. 20C, the user can be prompted by the display 310 to
select one or more rooms for cleaning at the desired date and
time. In accordance with various embodiments of the present
teachings, a user could select “CUSTOM” and set a date and
time for each room registered in accordance with FIGS. 19A-
19C, or could select a predefined schedule as illustrated in
FIG. 20A and personalize that selection by choosing days and
times if desired.

In accordance with certain embodiments of the present
teachings, the remote control 370, can also display a status
screen such as that illustrated in FIG. 22. The status screen
can have a variety of formats for informing the user how much
of a scheduled cleaning has been completed. The status
screen can be accessed in a variety of ways via manipulation
of the remote control 370, or may appear in the manner of a
screen saver when the remote control 370 is not being used for
controlling an autonomous vehicle or inputting data. One
skilled in the art will understand that the selections facilitated
by the remote control 370 in FIGS. 19A-22 can also be
accomplished via other devices, such as a handheld PDA, a
cellular phone, or a laptop or other similar computing devices.

Other embodiments of the present teachings will be appar-
ent to those skilled in the art from consideration of the speci-
fication and practice of the teachings disclosed herein. It is
intended that the specification and examples be considered as
exemplary only, with a true scope and spirit of the present
teachings being indicated by the following claims.

What is claimed is:

1. A method performed by a device remote from an autono-
mous vehicle, the method comprising:

receiving input from a user specifying a task for the autono-

mous vehicle, wherein the task involves having the
autonomous vehicle traverse an area;

sending one or more instructions to the autonomous

vehicle to begin the task; and

displaying, on a display screen of the device, a status screen

indicating how much of the task the autonomous vehicle
has completed, wherein displaying the status screen
comprises coloring a floor plan of the area as the autono-
mous vehicle traverses the area so that one or more
colored portions of the floor plan illustrate where the
autonomous vehicle has been and one or more uncolored
portions of the floor plan illustrate where the autono-
mous vehicle has not been.

2. The method of claim 1, wherein the autonomous vehicle
is a cleaning robot, and wherein the task is a cleaning task.

3. The method of claim 1, wherein displaying the status
screen comprises displaying a percentage of the task that has
been completed.

4. The method of claim 1, wherein receiving input from the
user comprises receiving scheduling information for sched-
uling the task, and wherein sending the one or more instruc-
tions to the autonomous vehicle comprises sending the one or
more instructions according to the scheduling information.
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5. The method of claim 1, wherein displaying the status
screen comprises displaying the status screen in the manner
of a screen saver when the device is not being used for con-
trolling the autonomous vehicle or inputting data.

6. A device comprising:

one or more input devices; and

a display,

wherein the device is configured to control a remote

autonomous vehicle by performing operations compris-

ing:

receiving, by the one or more input devices, input from
a user specifying a task for the autonomous vehicle,
wherein the task involves having the autonomous
vehicle traverse an area;

sending one or more instructions to the autonomous
vehicle to begin the task; and

displaying, on the display, a status screen indicating how
much of the task the autonomous vehicle has com-
pleted, wherein displaying the status screen com-
prises coloring a floor plan of the area as the autono-
mous vehicle traverses the area so that one or more
colored portions of the floor plan illustrate where the
autonomous vehicle has been and one or more uncol-
ored portions of the floor plan illustrate where the
autonomous vehicle has not been.

7. The device of claim 6, wherein the autonomous vehicle
is a cleaning robot, and wherein the task is a cleaning task.

8. The device of claim 6, wherein displaying the status
screen comprises displaying a percentage of the task that has
been completed.

9. The device of claim 6, wherein receiving input from the
user comprises receiving scheduling information for sched-
uling the task, and wherein sending the one or more instruc-
tions to the autonomous vehicle comprises sending the one or
more instructions according to the scheduling information.

10. The device of claim 6, wherein displaying the status
screen comprises displaying the status screen in the manner
of a screen saver when the device is not being used for con-
trolling the autonomous vehicle or inputting data.
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11. A method performed by a device remote from a clean- 40

ing robot, the method comprising:
displaying, on a display screen of the device, a plurality of
available cleaning modes for the cleaning robot;
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receiving input from a user selecting a cleaning mode for
the robot, wherein the selected cleaning mode is an area
rug cleaning mode;

based on the selected cleaning mode, displaying instruc-

tions to the user on the display screen, wherein display-
ing instructions to the user comprises displaying instruc-
tions for the user to place the cleaning robot on an area
rug;

receiving further input from the user confirming that the

cleaning robot is ready; and

sending one or more instructions to the cleaning robot to

enter the selected cleaning mode.

12. The method of claim 11, further comprising displaying,
on the display screen, a confirmation to the user that the
cleaning robot will clean the area rug only.

13. The method of claim 12, wherein the plurality of avail-
able cleaning modes includes a spot clean mode, a deep clean
mode, an area rug mode, and a drive now mode.

14. A device comprising:

one or more input devices; and

a display,

wherein the device is configured to control a cleaning robot

by performing operations comprising:

displaying, on the display, a plurality of available clean-
ing modes for the cleaning robot;

receiving, by the one or more input devices, input from
a user selecting a cleaning mode for the robot,
wherein the selected cleaning mode is an area rug
cleaning mode;

based on the selected cleaning mode, displaying instruc-
tions to the user on the display screen, wherein dis-
playing instructions to the user comprises displaying
instructions for the user to place the cleaning robot on
an area rug;

receiving further input from the user confirming that the
cleaning robot is ready; and

sending one or more instructions to the cleaning robot to
enter the selected cleaning mode.

15. The device of claim 14, the operations further compris-
ing displaying, on the display screen, a confirmation to the
user that the cleaning robot will clean the area rug only.
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